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Dynamical origin of deterministic stochastic resonance
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We numerically demonstrate stochastic-resonance-like behavior in a deterministic chaotic oscillator system,
using a modified Resler system driven by a sinusoidal external force: intermittenpBase slips between the
system and the external force synchronize with a periodic input signal that weakly modulates the external force
in an appropriate parameter range. We show that the dynamical mechanism of this stochastic-resonance-like
behavior is explained by a boundary crisis that depends on two bifurcation parameters.
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During the last decade, stochastic resonaf@B) has x10 %, andQ=1.077. We introduce the cylindrical coordi-
been extensively studied in a number of electrical, opticalpate ©,r,z) defined byx=r cosé, y=r sing, andz=z. In

and neuronal systemsee Ref[1] and references thergin

Eq. (1), s=1+a(r2—r?), wherer is the average value of

To date, most studies on SR have been carried out for syss, 4, ordinary Resler oscillator =K =0,y=1) and we

tems with stochastic noise. However, it is natural to look for
SR-like phenomena in deterministic chaotic systems sinc
chaotic fluctuation is similar to noise. Anishchendioal. nu-

merically demonstrated in Ref2] that an SR-like phenom-
enon can be caused by internal chaotic dynamics rather th H
stochastic noise. They used the dynamics of a one

seta=2.0x 10 3. The projection of the attractor on tixey
%Iane forms a ring, in which a phase point always rotates
around the origin. Therefore, we can ugas the phase of
dhe chaotic rotation. We adopt @ value that is continuous
with respect to time: i.e., we distinguish integer multiples of

dimensional chaotic map in the vicinity of a band-merging27 differences ofé.

crisis and showed that the intermittent hopping between two First, we consider the case o+ 0. We focus on the phase
different chaotic repellers synchronizes with the external pedifference A= 6—Qt. If K is larger than a critical value
riodic signal. The SR-like phenomenon in chaotic system&., A# is confined within a small range fail time while
without stochastic noise is calledeterministic stochastic the amplitude still fluctuates chaotically. This phenomenon
resonance(DSR). DSR has been reported for certain otheris called chaotic phase synchronizat{@7]. In contrast, for
chaotic systems: numerically for the forced double-well Duf-K<K., A# increases in time with intermittents2 jumps
fing system[3] and also in ferromagnetic resonarjéé and  althoughA @ is almost constant except for these jumps.

chaotic CQ laser[5] experiments. However, the dynamical

Figure 1 shows the time evolution aff for certain val-

mechanism of DSR has yet to be fully understood, in that nqies ofv. The phase differenca 6 increases with a sequence

of the dynamics: it has not be_en clarified what type_of cris_ismore frequently as increases. Therefore,can be regarded,
leads to DSR and how the crisis depends on the bifurcatio, sense, as a parameter for controlling the intensity of

parameters is essential for DSR although some relationshi
between a crisis and DSR has been pointed out based
numerical experiment2].

In this paper, we demonstrate that a chaotic oscillator sys-
tem with a weak periodic input signal exhibits DSR. We then™
show theoretically that DSR in that system is caused by
boundary crisis that induces a collision between an attracto¥
and a periodic orbit on its basin boundary. We specially em-
phasize that the DSR mechanism is explained using the scal-
ing law of two bifurcation parameters in the boundary crisis.

We employ a modified Rssler system driven by a sinu-
soidal external forc§6], where the coupling strength of the
external force is weakly modulated by a periodic modulating
signal,

X=5s(—vy—2),
y=s(vx+ay)+K[1+ esin(wt)]sin(Qt),
z=s[b+z(x—c)], (1)

wherev, a, b, ¢, K, €, o, and() are constants. Throughout
this paper, we seta=0.20, b=0.20, c=4.80, »=6.0
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Pternal chaotic fluctuation. We useas a control parameter
at allows us to observe DSR.

We then consider a system whose coupling strength is
odulated by a weak signal, that is#0. Figure 2 shows
hat this modulation drastically changes the probability dis-
ibution p(7) of interslip intervals, which are durations be-
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FIG. 1. Time evolution of phase differences.
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x10™ except in a smalr range, i.e.p(7)=N\ exp(—\7), where the
2 e=0.0 constani\ represents the phase slip rate. The deviation from
wnene : v=1.0040 N exp(—\7) in the smallr range means that there is some
1.5¢ £=0.05 refractory time in successive phase slips. The exponential
— - v=1.0040 form of p(7) in the larger range implies that successive
li 4LE . == 1v=1.0038 phase slips are statistically independent: the probability of a
:v=1.0036 phase slip occurring during a short peridd is given by
NAt, with no memory. Wherr=0 in Eq. (1), the rate\ is a
057 function of K and », namely,x = f(K, ).
TNt For e# 0, p(7) differs from the exponential distribution.
% ; e In the present study, we consider the case of a slowly varying

% 10° periodic signal, i.e.w<<1. This condition means we can as-
sume that the periodic signal only modulates the Katéhat
FIG. 2. Inter-slip interval distributiop(7) without a modulat-  js the occurrence of phase slips still follows a Poisson pro-
ing signal €=0) and with a signal §=0.05). cess with theime-dependentate.
Suppose that one phase slip occurd=at, and that the
tween two consecutive slips. Without the signal, the distribuphase of the modulating signal at timg is ¢
tion is unimodal and decays exponentially for largebut = wt,mod27 (0< ¢,<2). We define a new time variable
with the signal, it develops multipeaks. The peaks are cenas r=t—t,. The time-dependent rate is given as a function
tered at integer multiples of the periodr2w of the modu-  of 7 and ¢,, and we denote it by (7] ¢,). The probability
lating signal. This implies that phase slips are most likely tothat the next phase slip occurs at timecan be given by
occur for a certain phase of the modulating signal. We CaP( 7| ¢ho) =\ (7] o) exd — JoA(7' | po)d7' ]. When the modulat-
also say that the phase slips synchronize statistically with thgyg signal is imposed, the time dependenca of| ¢,) arises
signal. . _ from the modulation of variabl& in f(K,») (=\). If we
In Fig. 3, the differenceé pn=pc—0.087n) —Pe=0(7n) IN  substituteK[ 1+ e sin(wr+ ¢y)] into K and expand with re-
thenth peak height with and without the modulating signal isspect to K sin(wr+¢,) to the first order, we obtain
plotted versuss for n=1,2, wherep _q s and p.—o repre-  \(7|¢o) = f(K,v) +[af/9K(K,v)]eK sin(@r+ ). Thus, we
sent p(7) for €=0.05 and e=0, respectively, andr, have
=2mn/w. The differenceA p, for the first peak has a maxi-
mum value atv=1.0038. For the second peakp, has its p _
maximum atv=1.0036, which is smaller than for Ap;. (7l o) =
Coherent behavior with the signal appears for an appropriate K of
value of v, that is, for an appropriate intensity of internal _ en ot _
randomness. It should be emphasized that this resonant be- Xexp{ frt ® &K{COS{M-Jr $o) ~COSo} |
havior in Ap, coincides with the characteristics of SR. This %)
SR-like behavior is caused not by external stochastic noise
but by chaotic internal fluctuation. Therefore, we call thisWe define¢ €[0,27) as the phase of the modulating signal
DSR. at the time when the next phase slip occurs. The ph&ase
Below, we clarify the dynamical mechanism of DSR. We relates tor as ¢= ¢+ w7—27m, wherem=1,2, ... if ¢
start with an approximate theory, which is based on a Pois< ¢, andm=0,1, ... if = ¢,. If we change the variable
son process approximatids,9]. Figure 2 indicates that for to ¢ in Eq.(2), we can obtain the probability ,,( ¢| ¢o) that
€=0, p(7) can be well fitted to the exponential distribution the next phase slip occurs atr= ¢— ¢o-+27m. The prob-
ability that one phase slip occurs @t and the next one at

of
f+EKWSIn(wT+ (ﬁo)}

X 10° . _ ¢ [0,2] is given by the sum oP,, over all possiblem
8 ©-© :4p, (simulation) valuessm=1,2,3 ... for p<¢, andm=0,1,2 ... for ¢
77 99 : Ap, (simulation = ¢,. The explicit form of P(¢|¢,) can be obtained from
6 — :4p, (theory) " Eqg. (2) as follows
5t -0 -0\ —
4t P(¢|¢) F(¢!¢O)e (1_e ) lv ¢<¢O! (3)
e =
< 3 F(¢1¢O)(l_eio—)711 ¢>¢01
i F(, o) ‘1(f+ K&f in¢
1t o) =w €K —sin
ok dK
21 : : ' f eK of
1.003 1.0035 v 1.004 1.0045 X ex;{ — Z(d,— bo) +Z R(COSQS— COS¢y) |,
FIG. 3. DifferenceAp, betweene=0.0 ande=0.05 versus. (4)
n=1(0) andn=2(<). The theoretical curve is also shown as a
thick solid line. whereo=27flw.
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Let W(¢g) be the probability distribution for the phase of
the modulating signal at which a phase slip occurs. In the _
steady stateWVW has to satisfy the integral equatiafi( ¢) Tt e
=J2"P(¢olp')W(p')d¢’, which leads to distribution ?
W( o) =1I2mf)[ f+ eK(df/IK)sin¢y]. We can obtain the : Lk
inter-slip interval distributionp(7) by integratingP (7| ¢o) B e
with the weightW(¢,) over ¢o<[0,27). The nth peak of _ 5.5} | aht! g
p(7) is located atr,=2mn/w. Therefore, we can calculate
the nth peak height as p(7,)=[f+1/(2f){eK(of/

Basin—___

K)}lexp(—fr,). With e=0, the value ofp(7) at r=r, is 451 =

obtained asp._o(7,) =f exp(—f7,) by settinge=0. If we ak

subtractp._o(7,) from p..o(7,), then we obtain the differ-

enceAp, in the nth peak height between the two cases of & femnantAtractor

e=0 ande#0 as follows: 3t A 4 f ;
1.5 2 25 3

Ab

1 af\2
A =—| eK—| exp(—fr,). 5
Pa(v) 2f ( ﬁK) A=) © FIG. 4. (Color) Remnant attractor and basin. A trajectory exhib-

) ) ) ) iting a phase slip is also plotted). Parameters are=0, K
The differenceAp, is a function of v sincef and df/dK =0.07, andv=1.0032.

depend orw. In Eq. (5), f anddf/dK are quantities that are

defined in the signal free casee<0). This shows that pjgreation crisig11], whose process is as follows. There are
whether or not p, exhibits resonance behavior depends onyyg ynstable fixed points on the attractor and the basin
the signal free properties of the system. Equalidnindi-  poyndary of the next attractor when the parameters corre-
cates t?atApn_ exhibits resonance behavior if and  spond to the synchronization state. As the parameters
(9/9K)*/f are increasing functions of. change, these fixed points approach each other, coalesce, and
Next, we derive the functional form df(K,») from the  gisappear. To demonstrate this process clearly, we define the
dynamical properties of the system. The transition betweegjsplacemend,,,;, of mapM as a function ofAd by d,.;,
the synchronization state with no phase slip and the desy”&minrﬂM(A 0,r,2)—(A6,r,2)|, where M(A6,r,z) stands
chronization state with intermittent phase slips is shown tGq, the image of a point4 ,r,z) given by mapM. Figure 5
be caused by an unstable-unstable pair bifurcation Cri5i§howsdmm plotted as a function oA @ for »=1.0038 and
[6,10]. A stroboscopic map of syste() is useful as regards  gomeks. By definition,d,,, is zero at a fixed point. In Fig.

observing this. A stroboscopic map.M:R3e R, 5, there are sharp decreasesljp, at two points for a large
(A6;,1,2)—~>(A6i+1,Ti41,Z41) can be defined by sam-  \yhich correspond to the fixed points. These two fixed
_pImg the flow of systenil) at timet=2i/(), wherei is an points approach each other, coalesce, and disappe#r as
integer. _ _ decreases. This confirms the existence of the above-

It is shown in Ref.[6] that the attractor lies on a near mentioned bifurcation process. In addition, the bifurcation
two-dimensional manifold in4 6,r,z) space, and 6 is de- point can be found & .= 0.1403.

fined on the line—«<A@§<o. When the system is in the * \ye derive the form of based on a theory proposed in Ref
synchronization state, there is an infinite array of such attrag- o). Near the bifurcation point, there are multiplicators; one
tors spaced by 2 in A § because of the invariance of system (approximately in theAd direction, which we call the

(1) to the transformatiorp— 6+ 2. There is no path that \yeakly unstable directionis close to one and anothéap-

connects the different attractors. proximately in ther direction, which we call the strongly

~When the system is in the desynchronization state, regpstaple directionhas an absolute value larger than one,
gions that were previously occupied by the different attrac-

tors, which we call the remnant attractors, are connected by
certain trajectories. Here, the remnant attractor also lies on a
near two-dimensional manifold. Figure 4 shows one of the
remnant attractors, which is projected onto th&(r) plane,
along with blue points on the manifold that will move to-
wards the next remnant attractor displaced from the pre-

sented one by 2. We call a set of these points a basin. The "fo-'t ‘., A .'

numerical method we used for depicting Fig. 4 is the same as — k=o1380 %/ i

that used in Ref[6]. In Fig. 4, an example of a trajectory == --K=0.1403 Vi ;

exhibiting a phase slip is also plotted by red This trajec- 107} -==-k=0.1420 ! ' 1

tory moves from left to right passing through a narrow chan-

nel, which appears to be the only dominant channel in the 18 2 21 22 23 24 25 28 27

parameter range we used. The motion through the channel is
slow and similar to the period one motion. We show that this FIG. 5. Displacement,,;, plotted against\ §. Parameters are
channel is created by a period one unstable-unstable paé=0 andv=1.0038.
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which we denote byu. The other multiplicator is disre- 10° —

garded since the motion is restricted to the manifold. The 9o n\b

dynamics in the weakly unstable direction is the same as that 104l &

for usual saddle-node bifurcation. Therefore, for anythe o

time tg; needed for the trajectory to pass through the channel

can be scaled by, ~[K(»)—K] Y2 [12]. An important -10%} >

point is thatK, is a function ofv. If we expandK, for v b\

—vg, we have tg~[K¢(vg)+{dK(vo)ldvi(v—ry) 10| b

—K] Y2 A trajectory can pass through the channel if the R,
trajectory stays inside the channel fgr. The distance\ (t) @ x
from the channel center in the strongly unstable direction 10';,.5 36 37 38 389 4 41
grows exponentially in time, i.e.A(t)=A(0)|u|'. Since K v)-K) €12

A(t) has to be smaller than the half widi of the channel,
we haveA (0)<Cj|u| ~'s!. The trajectory initially has to visit
a very small region on the remnant attractor to enter th{1
channel, whose measure is proportionalCtdu| ' If we '
assume a uniform invariant probability density on the rem-determine vy=1.0034,K.=0.1362, and ¢K./dv=10.25
nant attractor, the probability of the trajectory visiting the from the d,;, calculations andC,;=1.62x10?® and C,
above small region during a unit time is also proportional to=19.89 by least-square fitting to the numerical resulf.of
C;| x|~ ' This probability gives the slip rateé Therefore, They agree with each other very vyell. Wg can readily find
using the scaling law fotg,, we arrive at that for Eq.(6), f and ©f19K)?/f are increasing functions of
v in the parameter range we used. In Fig. 3, the theoretical
K ~1/2 curve of Ap,; obtained from Eqgs(5) and(6) actually shows
Ko+ —(y—yo)—K] } (6)  resonant behavior and good agreement with the numerical
v curve. To conclude, the dynamical mechanism of DSR in
system(1) can be explained by a two-parameter unstable-
In Fig. 6, we plot a numerical result 6{K,v) determined by unstable pair bifurcation crisis. Since an unstable-unstable
the inverse of the average inter-slip interva|, against pair bifurcation crisis is one of typical crisis pattern, the
[K(v)—K] Y2 for certain values of,, whereK (v) is de-  present mechanism provides one of typical DSR mechanism.
termined from thed,;, calculations. The theoretical result Furthermore, it is expected that this approach to explanation
Eqg. (6) is also shown by a dashed line in Fig. 6, where weof DSR can widely be applied to other types of crises.

FIG. 6. Phase slip raté plotted againsfK.(v)— K]~ Y2 Nu-
erical results are shown for=1.0030(<), 1.0036(Q), and
0042(1). Scaling law Eq(6) is also showrn(dashed ling
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